Mathematical Methods for Computer Science Syllabus


  1. Descriptive statistics(5h):
    • frequency tables & graphs
    • Central tendency & variability indexes
    • percentiles & correlation coefficient
  2. Elementary probability(15h):
    • elements of combinatorics;
    • probability definitions;
    • conditional probability
    • independence
  3. Discrete & absolutely continuous random variables(15h):
    • distributions
    • expected values & variances
    • Notable examples
  4. Jointly distributed random variables(15h):
    • marginals & conditional distributions
    • Independence
    • correlation & conditional independence
    • notable multivariate distributions
  5. Convergence in probability & in distribution(5h):
    • weak law of large numbers & central limit theorem
  6. Statistical inference(10h):
    • sampling from a population
    • sampling statistics & their distribution;
    • parameter estimation
    • estimators & related properties
    • maximum likelihood estimators
    • pseudo-random numbers
    • examples of related generating alghoritms
  7. Confidence intervals(10h):
    • confidence intervals for the mean & for proportions
    • asymptotic confidence intervals.
    • Basics of hypothesis testing
  8. Multiple linear regression & least square estimation (5h).

  9. Theory of distributions(8h):
    • definitions & basic operations
      • algebraic operations
      • translation
      • rescaling
      • derivatives
    • Dirac delta
    • $p.v.\left(\dfrac{1}{t}\right)$
    • Dirac comb;
    • Convolution of functions & distributions
  10. Fourier & Laplace transforms of complex valued functions & of distributions(12h):
    • definitions & properties
    • inverse transforms
    • inversion formula
    • Notable transforms