Math Analysis II Note 01
Laplace Transfroms
DEFINITION of Laplace Transfrom:
\(\mathscr{L}\{x(t)\} = \int_{0}^{\infty}{x(t)e^{-st}dt} = \lim\limits_{M \to \infty} \int_{0}^{M}{x(t)e^{-st}dt}\\\) An integral is transformable with a Laplace transform only if the integral is Convergent
Properties
Function with exponential growth
DEFINITION of a function with Exponential growth:
\(x:\mathbb{R} \mapsto \mathbb{R}\\ t \mapsto x(t)\\ \text{If } \exists M > 0\\ \exists\gamma \in \mathbb{R} \text{ such that} \begin{vmatrix} x(t) \end{vmatrix}\le Me^{\gamma t}, \forall t \ge 0\\\) and we define the Order of Growth
DEFINITION piecewise continuous functions:
\(x: \mathbb{R} \mapsto \mathbb{R}\) is piecewise Continuous
If in every closed and bounded interval it has at most a finite number of singularities of the following kinds:
- $1^{\text{st}}$ Kind (Jump)
- $3^{\text{rd}}$ Kind (Removable)
$\mathfrak{F} \to \mathscr{G}$
Written on 30th of sep
Chapter 1 overview
- Definitions and examples
- Theorems
Theorems
Theorem:
Initial Value theorem \(x \in \mathscr{L}(0, +\infty) \implies \lim\limits_{t \to 0^{+}}X(t) = \lim\limits_{s \to +\infty}s X(s)\)
Final Value Theorem \(x \in \mathscr{L}(0, +\infty) \implies \lim\limits_{t \to 0^{+}}X(t) = \lim\limits_{s \to +\infty}s X(s)\)
Chapter 2
2.1 Vectors 2.2 Curves 2.3 Scalar functions in n variables
In analysis I $f:D \subset \mathbb{R} \mapsto \mathbb{R}$ Funcitions
In analysis II $f: A \subset \mathbb{R}^n \mapsto \mathbb{R}^m$ functions
$where n \ge 1 m \ge 1$
If n = m = 1 real valued functions with real variables (AN. 1)
If n = 1 & m>1 Curve in $\mathbb{R}^m$ $scalar \mapsto vector $
If n > 1 & m = 1 Scalar funcitions $vector \mapsto scalar$
If n > 1 & m > 1 Vector valued functions vector $\mapsto$ vector
If n = m vector fields